

# Evaluating the Costs and Benefits of Transitioning to Electric Vehicles (EVs) in the State Fleet

A Leadership Challenge

Rodney Berry
Matthew James
Neil Boege
Rick Brooks
Patrick Bridge

### **Current Initiatives**

### Virginia

- Governor Northam Announces \$20 Million Electric School Bus Initiative
- \*"Each electric school bus can save districts nearly \$2,000 a year in fuel and \$4,400 a year in reduced maintenance costs, saving tens of thousands of dollars over the lifetime of a bus,
- The City of Alexandria to test feasibility of electric police cars

# **Operating** Cost Advantage

According to the Department of Energy it costs half as much to fuel an electric vehicle per year

 Assuming current gas and electricity prices, \$800 -\$1000 less per year to power an EV

#### Maintenance Costs are lower

Electric vehicles do not require oil changes and regenerative braking limits brake pad wear, \$100 - \$200 less per year in maintenance cost

# **Operating** Cost Advantage

Estimated savings per vehicle replacing gas car with an EV:

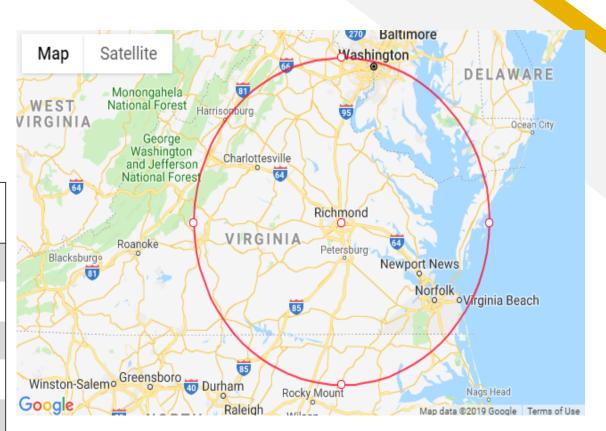
Savings of over \$1000 per year

# **Up-front** Costs are Higher

EVs are more expensive...

- Longer range mid-size EVs are currently approximately \$10,000 more expensive than midsize gas-powered cars
- Suggests a 10-year break-even period to gas car costs factoring in lower fuel and maintenance costs

## **Future** EV Total Cost of Ownership


❖ According to the Department of Energy, EV battery costs (33% of EV vehicle cost in 2019) are expected to halve over the next decade, which is expected to result in close to parity up-front pricing with gas cars

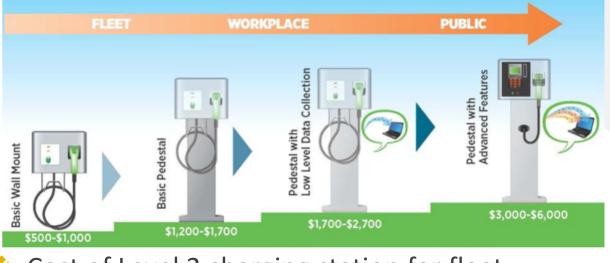
Cost Advantage of EVs will grow over time

### Range of EV on Full Charge

- National average daily driving distance = 30 miles/day
- Typical EV distance (full charge) = 200 miles
- Using Richmond as the center, a 100 mile drive could reach:

| Location        | Distance from Richmond |  |
|-----------------|------------------------|--|
| Charlottesville | 75 miles               |  |
| Emporia         | 70 miles               |  |
| Fredericksburg  | 60 miles               |  |
| Norfolk         | 95 miles               |  |
| Williamsburg    | 60 miles               |  |

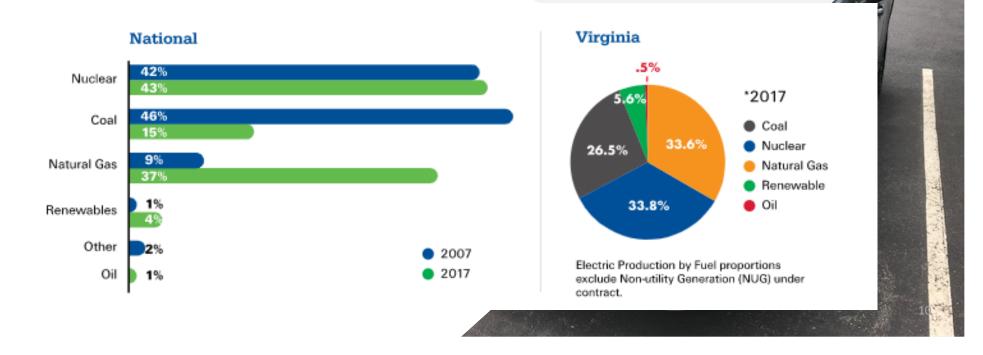



# **Charging Stations – Public Use Cost**

Total number of charging stations in Virginia: 549

| Location        | Level 2 Public Charging Stations |
|-----------------|----------------------------------|
| Charlottesville | 9                                |
| Emporia         | 1                                |
| Fredericksburg  | 6                                |
| Norfolk         | 13                               |
| Williamsburg    | 10                               |








- Cost of Level 2 charging station for fleet garages: \$1,000 \$3,000 / station
- Minimum of 3 charging stations for selected state garages housing EVs

# **Environmental** Impact

- Fully battery electric vehicles have zero direct emissions
- However, supply sources of electric power do have emissions (<a href="https://www.dominionenergy.com/company/making-energy">https://www.dominionenergy.com/company/making-energy</a>)



# **Environmental Impact:** Emissions

- EPA introduced the "MPGe" (miles per gallon of gasoline-equivalent
- Electric cars are 3 to 4 times more fuel efficient that gasoline cars
- EVs have 25% 33% of the environmental impact of gasoline cars

| Year/Make/Model          | Combined MPGe | City/Hwy MPGe     |
|--------------------------|---------------|-------------------|
| 2018 Chevy Bolt          | 119 MPGe      | 128 city/110 hwy  |
| 2018 Chevy Spark         | 34 MPG        | 30 city / 38 hwy  |
| 2018 Ford Focus Electric | 107 MPGe      | 118 city / 96 hwy |
| 2018 Ford Focus          | 35 MPG        | 30 city / 40 hwy  |

# **Environmental Impact:** Reusing EV Batteries

- EV batteries have 80% storage capacity after normal automobile lifespan
- Can be used for less demanding tasks:
  - Storing electricity from solar panels
  - Conserving power from electrical grid during peak hours
  - Provide backup power for its data center (GM)
  - Nissan is marketing "The Reborn Light" for street light uses



### **Implications** for State Workforce

#### **Demand Factor:**

Increased critical mass will require new/revised workforce training programs focused on the "transitional" industry cluster needs.

### Strategies:

Develop partnership opportunities with transitional industry cluster members on new requirements such as skill set, location, supply chain needs, etc.

Explore resource leveraging opportunities with state/local/industry clusters on emerging training needs such as first providers, safety training, etc.

### **Implications** for State Workforce

### **Supply Factor:**

Increased critical mass will require a new/retrained workforce in this industry cluster

### Strategies:

Get in front of skill gap challenge

Labor Market Participation Rate versus Unemployment Rate

### **Implications** for State Workforce

Higher participation rate + Higher employment

New Revenue to the Commonwealth!

### EVs considered safer than gas cars

NHTSA rate EVs just as safe or safer to drive than gas cars

Absence of engine block improves forward crumple zone

Battery location lowers center of gravity – reduced rollover risk

No flammable liquids!

Pedestrian safety – still a challenge

### **Conclusions** and Recommendation

- Recommend limited/targeted introduction of vehicles and fleet lot charging stations
- Perhaps 10-15 EVs introduced into state agency service in the Richmond area
- Gain valuable knowledge of EV driving habits, infrastructure, advantages, and limitations to inform future transition initiatives



- (https://www.energy.gov/eere/elect ricvehicles/saving-fuel-and-vehiclecosts)
- https://www.electricchoice.com/ele ctricity-prices-by-state/),

